Part Number Hot Search : 
2J7510 PT5100 00020 2900A1 F12C05 0805L SD101 CR256
Product Description
Full Text Search
 

To Download VNQ500PEP-E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/17 june 2005 VNQ500PEP-E quad channel high side driver rev. 4 table 1. general features cmos compatible i/o?s chip enable junction overtemperature protection and diagnostic current limitation shorted load protection undervoltage shutdown protection against loss of ground very low stand-by current in compliance with the 2002/95/ec european directive description the VNQ500PEP-E is a monolithic device designed in stmicroelectronics vipower m0-3 technology, intended for driving any kind of load with one side connected to ground. active current limitation combined with latched thermal shutdown, protect the device against overload. figure 1. package in case of overtemperature of one channel the relative i/o pin is pulled down. device automatically turns off in case of ground pin disconnection. table 2. order codes typ e r ds(on) i out v cc VNQ500PEP-E 500 m ? 0.4 a 36v powersso-12 package tube tape and reel powersso-12 VNQ500PEP-E vnq500peptr-e obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
VNQ500PEP-E 2/17 figure 2. block diagram table 3. pin definitions and functions pin no symbol function tab v cc positive power supply voltage 7,12 v cc positive power supply voltage 1 gnd logic ground 2 ce chip enable 3 i/o 1 input/output of channel 1 4 i/o 2 input/output of channel 2 5 i/o 3 input/output of channel 3 6 i/o 4 input/output of channel 4 8 output 4 high-side output of channel 4 9 output 3 high-side output of channel 3 10 output 2 high-side output of channel 2 11 output 1 high-side output of channel 1 v cc i/o 1 output 1 i/o 2 i/o 3 i/o 4 output 2 output 3 output 4 logic junction temp. detection undervoltage detection clamp power current limiter v cc clamp same structure for all channels gnd ce ot1 ot2 ot3 ot4 obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
3/17 VNQ500PEP-E table 4. absolute maximum ratings figure 3. configuration diagram (top view) figure 4. current and voltage conventions symbol parameter value unit v cc dc supply voltage 41 v -v cc reverse supply voltage -0.3 v - i gnd dc ground pin reverse current - 250 ma i out dc output current internally limited a - i out reverse dc output current -1 a i in dc input current +/- 10 ma v esd electrostatic discharge (r=1.5k ? ; c=100pf) - i/on - outn & vcc 4000 5000 v v p tot power dissipation at t c =25c 73 w t j junction operating temperature internally limited c t stg storage temperature - 55 to 150 c tab = v cc v cc output1 output3 output4 v cc output2 12 11 10 9 8 7 1 2 3 4 5 6 i/o4 gnd i/o1 i/o2 ce i/o3 i s i gnd outputn v cc gnd i/on i outn i inn v inn v cc v outn ce i ce v ce obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
VNQ500PEP-E 4/17 table 5. thermal data note: 1. when mounted on a standard single-sided fr-4 board with 0.5cm 2 of cu (at least 35 m thick) connected to all v cc pins. note: 2. when mounted on a standard single-sided fr-4 board with 8cm 2 of cu (at least 35 m thick) connected to all v cc pins. electrical characteristics (8v 5/17 VNQ500PEP-E electrical characteristics (continued) table 9. protections (see note 1) note: 1. to ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic sign als must be used together with a proper software strategy. if the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles figure 5. switching time waveforms: turn-on & turn-off figure 6. driving circuit symbol parameter test conditions min typ max unit v ol i/o low level default detection i in =1ma, latched thermal shutdown 0.5 v t tsd junction shut-down temperature 150 175 200 c i lim dc short circuit current v cc =13v; r load =10m ? 0.4 0.9 a v demag turn-off output clamp voltage i out =0.25 a; l=50mh v cc -41 v cc -48 v cc -55 v t reset thermal latch reset time t j < t tsd (see figure 3 in waveforms) 10 s t v out 90% 10% dv out /d t(off) dv out /d t(on ) 80% t v in t on t off t r t f mcu mcout n i/o n vnq500pep r prot (*) output n r prot (*) ce (*) see pag. 8 r prot (*) diagnostic feedback obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
VNQ500PEP-E 6/17 table 10. truth table table 11. electrical transient requirements on v cc pin conditions mcoutn ce i/on outputn normal operation l h h h l h l h current limitation l h h h l h l h overtemperature l h h h l l (latched) l l undervoltage l h h h l h l l stand-by x l x l iso t/r 7637/1 test pulse test levels i ii iii iv delays and impedance 1 -25 v -50 v -75 v -100 v 2 ms 10 ? 2 +25 v +50 v +75 v +100 v 0.2 ms 10 ? 3a -25 v -50 v -100 v -150 v 0.1 s 50 ? 3b +25 v +50 v +75 v +100 v 0.1 s 50 ? 4 -4 v -5 v -6 v -7 v 100 ms, 0.01 ? 5 +26.5 v +46.5 v +66.5 v +86.5 v 400 ms, 2 ? iso t/r 7637/1 test pulse test levels results i ii iii iv 1cccc 2cccc 3acccc 3bcccc 4cccc 5ceee class contents c all functions of the device are performed as designed after exposure to disturbance. e one or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
7/17 VNQ500PEP-E figure 7. waveforms mc outn 1) normal operation 2) undervoltage v cc v usd v usdhyst mc outn v outn v outn 3) shorted load operation i/o n i/o n mc outn i/o n t tsd t jn i outn ce ce ce t reset v ol obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
VNQ500PEP-E 8/17 figure 8. application schematic gnd protection network against reverse battery solution 1: resistor in the ground line (r gnd only). this can be used with any type of load. the following is an indication on how to dimension the r gnd resistor. 1) r gnd 600mv / (i s(on)max ). 2) r gnd (? v cc ) / (-i gnd ) where -i gnd is the dc reverse ground pin current and can be found in the absolute maximum rating section of the device?s datasheet. power dissipation in r gnd (when v cc <0: during reverse battery situations) is: p d = (-v cc ) 2 /r gnd this resistor can be shared amongst several different hsd. please note that the value of this resistor should be calculated with formula (1) where i s(on)max becomes the sum of the maximum on-state currents of the different devices. please note that if the microprocessor ground is not common with the device ground then the r gnd will produce a shift (i s(on)max * r gnd ) in the input thresholds and the status output values. this shift will vary depending on many devices are on in the case of several high side drivers sharing the same r gnd . if the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the st suggests to utilize solution 2 (see below). solution 2: a diode (d gnd ) in the ground line. a resistor (r gnd =1k ?) should be inserted in parallel to d gnd if the device will be driving an inductive load. this small signal diode can be safely shared amongst several different hsd. also in this case, the presence of the ground network will produce a shift ( j 600mv) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. this shift will not vary if more than one hsd shares the same diode/resistor network. load dump protection d ld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds v cc max dc rating. the same applies if the device will be subject to transients on the v cc line that are greater than the ones shown in the iso t/r 7637/1 table. c i/os protection: if a ground protection network is used and negative transient are present on the v cc line, the control pins will be pulled negative. st suggests to insert a resistor (r prot ) in line to prevent the c i/os pins to latch-up. the value of these resistors is a compromise between the leakage current of c and the current required by the hsd i/os (input levels compatibility) with the latch-up limit of c i/os. -v ccpeak /i latchup r prot (v oh c -v ih -v gnd ) / i ihmax calculation example: for v ccpeak = - 100v and i latchup 20ma; v oh c 4.5v 5k ? r prot 65k ? . recommended r prot value is 10k ?. v cc gnd output d gnd r gnd d ld c +5v v gnd ce i/0n r prot r prot r prot diagnostic feedback obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
9/17 VNQ500PEP-E figure 9. off state output current figure 10. high level input current figure 11. input clamp voltage figure 12. turn-on voltage slope figure 13. overvoltage shutdown figure 14. turn-off voltage slope -50 -25 0 25 50 75 100 125 150 175 tc ( c ) 0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 il(off) (ua) vcc=36v -50 -25 0 25 50 75 100 125 150 175 tc ( c ) 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 iih (ua) vin=3.25v -50 -25 0 25 50 75 100 125 150 175 tc ( c ) 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 vicl (v) iin=1ma -50 -25 0 25 50 75 100 125 150 175 tc ( c ) 0 100 200 300 400 500 600 700 800 900 1000 dvout/dt(on) (v/ms) vcc=13v rl=6.5ohm -50 -25 0 25 50 75 100 125 150 175 tc ( c ) 20 25 30 35 40 45 50 55 60 vov (v) -50 -25 0 25 50 75 100 125 150 175 tc ( c) 400 450 500 550 600 650 700 750 800 dvout/dt(off) (v/ms) vcc=13v rl=6.5ohm obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
VNQ500PEP-E 10/17 figure 15. i lim vs t case figure 16. on state resistance vs v cc figure 17. input high level figure 18. input hysteresis voltage figure 19. on state resistance vs t case figure 20. input low level -50 -25 0 25 50 75 100 125 150 175 tc ( c ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ilim (a) vcc=13v 5 10152025303540 vcc (v) 0 100 200 300 400 500 600 700 800 900 1000 ron (mohm) iout=0.25a tc= -40c tc= 25c tc= 150c -50 -25 0 25 50 75 100 125 150 175 tc ( c ) 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 vih (v) -50 -25 0 25 50 75 100 125 150 175 tc ( c ) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 vhyst (v) -50 -25 0 25 50 75 100 125 150 175 tc ( c) 0 100 200 300 400 500 600 700 800 900 ron (mohm) iout=0.25a vcc=8v, 13v & 36v -50 -25 0 25 50 75 100 125 150 175 tc ( c ) 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 vil (v) obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
11/17 VNQ500PEP-E figure 21. maximum turn off current versus load inductance a = single pulse at t jstart =150oc b= repetitive pulse at t jstart =100oc c= repetitive pulse at t jstart =125oc conditions: v cc =13.5v values are generated with r l =0 ? in case of repetitive pulses, t jstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves b and c. 0.1 1 10 10 100 1000 l(mh) i lmax (a) a b c v in , i l t demagnetization demagnetization demagnetization obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
VNQ500PEP-E 12/17 powersso-12 thermal data figure 22. powersso-12 pc board figure 23. r thj-amb vs pcb copper area in open box free air condition layout condition of r th and z th measurements (pcb fr4 area= 78mm x 78mm, pcb thickness=2mm, cu thickness=35 m, copper areas: from minimum pad lay-out to 8cm 2 ). 45 50 55 60 65 70 0246810 rthj_amb(c/w) pcb cu heatsink area (cm^2) obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
13/17 VNQ500PEP-E figure 24. thermal impedance junction ambient single pulse figure 25. thermal fitting model of a quad channel hsd in powersso-12 pulse calculation formula table 12. thermal parameter 0.1 1 10 100 1000 0.0001 0.001 0.01 0.1 1 10 100 1000 time (s) zth (c/w) footprint 8 cm 2 area/island (cm 2 ) footprint 8 r1=r7=r9=r11 (c/w) 0.8 r2=r8=r10=r12 (c/w) 2.6 r3 ( c/w) 1.5 r4 (c/w) 8 r5 (c/w) 28 18 r6 (c/w) 30 22 c1=c7=c9=c11 (w.s/c) 0.00006 c2=c8=c10=c12 (w.s/c) 0.0005 c3 (w.s/c) 0.015 c4 (w.s/c) 0.1 c5 (w.s/c) 0.15 0.17 c6 (w.s/c) 3 5 z th r th z thtp 1 ? () +  = where t p t ? = obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
VNQ500PEP-E 14/17 package mechanical table 13. powersso-12? mechanical data figure 26. powersso-12? package dimensions symbol millimeters min typ max dim. mm. min. typ max. a 1.250 1.620 a1 0.000 0.100 a2 1.100 1.650 b 0.230 0.410 c 0.190 0.250 d 4.800 5.000 e 3.800 4.000 e0.800 h 5.800 6.200 h 0.250 0.500 l 0.400 1.270 k0o 8o x 1.900 2.500 y 3.600 4.200 ddd 0.100 obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
15/17 VNQ500PEP-E figure 27. powersso-12 tube shipment (no suffix) figure 28. tape and reel shipment (suffix ?tr?) all dimensions are in mm. base q.ty 100 bulk q.ty 2000 tube length ( 0.5) 532 a 1.85 b 6.75 c ( 0.1) 0.6 a c b base q.ty 2500 bulk q.ty 2500 a (max) 330 b (min) 1.5 c ( 0.2) 13 f 20.2 g (+ 2 / -0) 12.4 n (min) 60 t (max) 18.4 reel dimensions tape dimensions according to electronic industries association (eia) standard 481 rev. a, feb 1986 all dimensions are in mm. tape width w 12 tape hole spacing p0 ( 0.1) 4 component spacing p 8 hole diameter d ( 0.05) 1.5 hole diameter d1 (min) 1.5 hole position f ( 0.1) 5.5 compartment depth k (max) 4.5 hole spacing p1 ( 0.1) 2 top cover tape end start no components no components components 500mm min 500mm min empty components pockets saled with cover tape. user direction of feed obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
VNQ500PEP-E 16/17 revision history table 14. revision history date revision description of changes dec. 2004 1 - first issue. jun. 2005 2 - electrical characterization insertion; - configuration diagram drawing change; - thermal data insertion; - shipment data insertion; - minor changes. jun. 2005 3 - maximum turn off current versus load inductance curve insertion; - thermal impedance junction ambient single pulse curve insertion. jun. 2005 4 - maximum turn off current versus load inductance curve review. obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)
17/17 VNQ500PEP-E i nformation furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for the con sequence s o f use of such information nor for any infringement of patents or other rights of third parties which may result from its use. n o license is grante d b y implication or otherwise under any patent or patent rights of stmicroelectronics. specifications mentioned in this publicatio n are subje ct t o change without notice. this publication supersedes and replaces all information previously supplied. stmicroelectronics produ cts are n ot a uthorized for use as critical components in life support devices or systems without express written approval of stmicroelectron ics. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners ? 2005 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com obsolete product(s) - obsolete product(s) obsolete product(s) - obsolete product(s)


▲Up To Search▲   

 
Price & Availability of VNQ500PEP-E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X